OLL Algorithms for Big Cubes

Developed by Feliks Zemdegs
and Andy Klise

Algorithm Presentation Format

Suggested algorithm here

Alternative algorithms here
OLL Case Name - Probability $=1 / x$

Round brackets are used to segment algorithms to assist memorisation and group move triggers.

It is recommended to learn the algorithms in the order presented.

Purple text denotes either a change in the suggested algorithm (from the 3×3 OLL Algorithm PDF) or an entire new algorithm.

All Edges Oriented Correctly

R U2 R' U'R U' R'
$y^{\prime} R^{\prime} U^{\prime} R$ U'R' U2 R
OCLL6 - $26-$ Probability $=1 / 54$

(R U2 R') (U'R U R') ($\mathrm{U}^{\prime} \mathrm{R} \mathrm{U}^{\prime} \mathrm{R}^{\prime}$)
y (R U R' U) (R U' R' U) (R U2' R')
OCLL1 - 21 - Probability = 1/108

(r U R' U') (r' F R F')
$y^{\prime} F\left(R \cup R^{\prime} U^{\prime}\right)\left(R U^{\prime} R^{\prime} U^{\prime}\right)\left(R U R^{\prime} F^{\prime}\right)$ $y^{\prime}\left(R \quad U^{\prime} R^{\prime} U 2\right)\left(R \cup R^{\prime} U 2\right)\left(R \cup R^{\prime}\right)\left(U R U ' R^{\prime}\right)$
OCLL4 $-24-$ Probability $=1 / 54$

R2 D (R' U2 R) D' (R' U2 R')
y2 R2' D' (R U2 R') D (R U2 R)
y2 F (R U' $\left.R^{\prime} U\right)\left(R \cup R^{\prime} U\right)\left(R U^{\prime} R^{\prime} F^{\prime}\right)$
$y\left(R \cup R^{\prime} U^{\prime}\right)\left(R U^{\prime} R^{\prime} U 2\right)\left(R U^{\prime} R^{\prime} U 2\right)\left(R U R^{\prime}\right)$
OCLL3-23 - Probability $=1 / 54$

R U R' U R U2' R'
y' R' U2' R U R' U R
OCLL7-27-Probability = 1/54

R U2' R2' U' R2 U' R2' U2' R
OCLL2 - $22-$ Probability $=1 / 54$

y $\mathbf{F}^{\prime}\left(\mathbf{r} \mathbf{U} \mathbf{R}^{\prime} \mathrm{U}^{\prime}\right) \mathrm{r}^{\prime} \mathrm{F} R$
y2 F (R U' R' U') (R U2 R' U') F'
OCLL5-25 - Probability $=1 / 54$

T-Shapes

Squares

S1 -5 - Probability $=1 / 54$

S2-6-Probability $=1 / 54$

C-Shapes

(R U R2' U') (R' F R U) R U' F'
y2 (R U R' U') (R' F R F') (R' U'R U' R' U2 R)
C1-34 - Probability $=1 / 54$

R' U' (R' F R F') U R
C2 $-\mathbf{4 6}-$ Probability $=1 / 54$

W-Shapes

($\left.R^{\prime} U^{\prime} R U^{\prime}\right)\left(R^{\prime} U R U\right) I U^{\prime} R^{\prime} U x$ y2 (R U R' F') (R U R' U') (R' F R U') (R' F R F')
W1-36 - Probability $=1 / 54$
(R U R' U) (R U' R' U') (R' F R F')
W2-38-Probability $=1 / 54$

Corners Correct, Edges Flipped

(R U R' U') M' (U R U' r')
E2-57-Probability $=1 / 108$

P-Shapes

($\left.R^{\prime} U^{\prime} F\right)\left(U R U^{\prime} R^{\prime}\right) F^{\prime} R$
P1-31 - Probability = 1/54

y R' U' F' UFR
P3-43 - Probability $=1 / 54$
R U B' (U' R' U) (R B R')
y $x^{\prime}\left(U^{\prime} R \cup I^{\prime}\right)\left(U^{\prime} R^{\prime} U^{\prime} R\right)\left(U R R^{\prime} U R\right)$
P2-32 - Probability $=1 / 54$
y2 F (UR U' R') F' $f\left(R \cup R^{\prime} U^{\prime}\right) f^{\prime}$

P4-44- Probability $=1 / 54$

I-Shapes

y2 F (UR U' R') (UR U'R') F' $f\left(R \cup R^{\prime} U^{\prime}\right)\left(R U R^{\prime} U^{\prime}\right) f^{\prime}$ $y^{\prime} R^{\prime} U^{\prime}\left(R^{\prime} F R F^{\prime}\right)\left(R U^{\prime} R^{\prime} U 2 R\right)$
|1-51 - Probability = $1 / 54$
($\left.R^{\prime} U^{\prime} R U^{\prime} R^{\prime} U\right) y^{\prime}\left(R^{\prime} U R\right) B$
($\mathrm{R} \cup \mathrm{R}^{\prime} \cup R U^{\prime}$) y ($\mathrm{R} \mathrm{U}^{\prime} \mathrm{R}^{\prime}$) F^{\prime} I2 $\mathbf{- 5 2}-$ Probability $=1 / 54$
$r^{\prime} U^{\prime} r\left(U^{\prime} R^{\prime} U R\right)\left(U^{\prime} R^{\prime} U R\right) r^{\prime} U r$
14-56 - Probability $=1 / 108$

y (R'FRU) (R U'R2' F') R2 U' R' (U R U R')
I3-55 - Probability = $1 / 108$

Fish Shapes

(R U R' U') R' F (R2 U R' U') F'
(R' U' R) y x' (R U' R' F) (R U I')
F1-9 - Probability $=1 / 54$
(R U2') (R2' F R F') (R U2' R')
F3-35 - Probability $=1 / 54$

Knight Move Shapes

F U R U' R2' F' R U (R U' R')
$F \cup\left(R \cup 2 R^{\prime} U^{\prime}\right)\left(R \cup R^{\prime} F^{\prime}\right)$
K1 $\mathbf{- 1 3}$ - Probability $=1 / 54$
y2 R' F (R U R' U') F' (R U' R' U2 R) (r U r') (R U R' U') (r U' r')

K4 $-\mathbf{1 6}$ - Probability $=1 / 54$
(R U R') y (R'F R U') (R' F' R) (R U R'U) (R'F R F') (R U2' R')

F2 $\boldsymbol{- 1 0}$ - Probability $=1 / 54$

F (R U' R' U') (R U R' F')
F4 $-\mathbf{3 7}-$ Probability $=1 / 54$

(R'FR) (U R' F'R) (F U' F')
K2 -14 - Probability $=1 / 54$

$y^{\prime}\left(R^{\prime} \mathrm{U} \mathbf{2}^{\prime} \mathrm{R}\right.$ U R') F (U R U' R') F' R (r' U'r) (R' U'R U) (r' Ur)

K3 - $\mathbf{1 5}$ - Probability $=1 / 54$

Awkward Shapes

$y\left(R U R U^{\prime}\right)\left(R U^{\prime} R^{\prime}\right)\left(F^{\prime} U^{\prime} F\right)\left(R U R^{\prime}\right)$
A1-29 - Probability $=1 / 54$

(R U R' U R U2' R') F (R U R' U') F'
A3-41 - Probability $=1 / 54$
y' F U (R U2 R' U') (R U2 R' U') F' $y^{\prime}\left(F R^{\prime} F\right)\left(R 2 U^{\prime} R^{\prime} U^{\prime}\right)\left(R \cup R^{\prime}\right) F 2$

A2 $\mathbf{- 3 0}-$ Probability $=1 / 54$

($\left.R^{\prime} U^{\prime} R U^{\prime} R^{\prime} U 2 R\right) F\left(R U R V^{\prime}\right) F^{\prime}$ y (R'FRF') (R'FR F') (R U R' U') (R U R')

A4 $-\mathbf{4 2}-$ Probability $=1 / 54$

$F\left(R \quad R^{\prime} U^{\prime}\right)\left(R U R U^{\prime} U^{\prime}\right) F^{\prime}$
L2 - $\mathbf{4 8}$ - Probability $=1 / 54$
$y\left(R^{\prime} U 2 R U R ' U R\right) F\left(R U R^{\prime} U^{\prime}\right) F^{\prime}$ L3-49-Probability $=1 / 54$
(r' U' R U') (R' U R U') R' U2 r y r' U2' R (U R' U' R) (U R' U r)
L5-53 - Probability = 1/54

Lightning Bolts

(rur'uruz'r)
B1-7-Probability $=1 / 54$

$\mathbf{r}^{\prime}($ R2 U R' U R U2 R') U M'
B3-11 - Probability $=1 / 54$

y2 (R U R') ($\left.F^{\prime} U^{\prime} F\right)(U R$ U2 R') $F\left(R U R^{\prime} U^{\prime}\right) F^{\prime}\left(R^{\prime} U^{\prime} R U^{\prime} R ' U 2 R\right)$
B5 - $\mathbf{3 9}-$ Probability $=1 / 54$

No Edges Flipped Correctly

01-1 - Probability $=1 / 108$

$f\left(R \quad R^{\prime} U^{\prime}\right) f^{\prime} U^{\prime} F\left(R U R R^{\prime} \mathbf{U}^{\prime}\right)$
03-3 - Probability $=1 / 54$

y R U2' (R2' F R F') U2' M' (U R U' r')
y2 F (RUR'U) y' R' U2 (R'FRF')
06-18 - Probability $=1 / 54$

(R U R' U) (R' F R F') U2' (R' F R F')
05-17- Probability = $1 / 54$
$R^{\prime} U^{\prime}\left(R^{\prime} F R F^{\prime}\right)\left(R^{\prime} F R F^{\prime}\right) U R$ $y^{\prime}\left(F R^{\prime} F^{\prime} R\right) \cup 2^{\prime}\left(R U^{\prime} R^{\prime} U\right)\left(R U 2 ' R^{\prime}\right)$
L1 $-\mathbf{4 7}$ - Probability $=1 / 54$

$y^{\prime}\left(R \mathrm{U} 2 \mathrm{R}^{\prime} \mathrm{U}^{\prime} \mathrm{R} \mathrm{U}^{\prime} \mathrm{R}^{\prime}\right) \mathrm{F}\left(\mathrm{R} U \mathrm{R}^{\prime} \mathrm{U}^{\prime}\right) \mathrm{F}^{\prime}$
L4-50 - Probability $=1 / 54$

(r U R' U) (R U' R' U) R U2' r' $y^{\prime}(r$ U2 R' U') (R U R' U') R U' r'
L6-54 - Probability = 1/54

(r' U' R U' R' U2 r)
y2 (R U2 R' U2') (R^{\prime} F R F')
B2 $\mathbf{- 8}$ - Probability $=1 / 54$

M' (R' U' R U' R' U2 R) U' M y F (RUR'U') F' U F (RUR'U') F'
B4-12 - Probability $=1 / 54$
($\left.R^{\prime} F\right)\left(R U R R^{\prime}\right) F^{\prime} U R$
B6 - $\mathbf{4 0}$ - Probability $=1 / 54$

