PLL Algorithms for Big Cubes

Developed by Feliks Zemdegs
and Andy Klise

Algorithm Presentation Format

Suggested algorithm here
Alternative algorithms here
PLL Case Name - Probability $=1 / x$

Round brackets are used to segment algorithms to assist memorisation and group move triggers.

Moves in square brackets at the end of algorithms denote a U face adjustment necessary to complete the cube from the states specified.

Purple text denotes either a change in the suggested algorithm (from the 3×3 PLL Algorithm PDF) or an entire new algorithm.

Permutations of Edges Only

R2 U (R U R' U') R' U' (R' U R') y2 ($\left.R^{\prime} \cup R^{\prime} U^{\prime}\right) R^{\prime} U^{\prime}\left(R^{\prime} \cup R U\right) R 2^{\prime}$

Ub - Probability $=1 / 18$

y' (R' U' R U') (R U R U') (R' U R U) (R2 U' R')
[U2]
Z - Probability = 1/36
(R U'R U) R U (R U' R' U') R2
y2 (R U R' U) (R' U' R2 U') R' U R' UR [U2] y2 (R2 U' R' U') R U R U (R U' R)
Ua - Probability $=1 / 18$

(R2 U2' R U2') (R2' U2' R2 U2') (R U2' R2')
H - Probability $=1 / 72$

Permutations of Corners Only

x (R^{\prime} U R') D2 (R U' R') D2 R2 x^{\prime}
x R2' D2 (R U R') D2 (R U'R) \mathbf{x}^{\prime}
y x' R2 D2 (R' U' R) D2 (R'U R') x y x' (R U' R) D2 (R' U R) D2 R2' x
Aa - Probability $=1 / 18$
Ab-Probability $=1 / 18$

y (R2 U R' U') y (R U R' U') (R U R' U') (R U R') y' (R U' R2')
E - Probability $=1 / 36$

Swap One Set of Adjacent Corners

(R U R' F') (R U2' R' U2') (R' F R U) (R U2' R') [U']
Ra - Probability $=1 / 18$

(R' U L' U2) (R U' R' U2 R) L [U']
y (R' U2 R U R' U2) (L U' R U L')
Ja - Probability = 1/18
(R U R' U') (R' F R2 U') R' U' (R U R' F')
T - Probability $=1 / 18$

.obability $=1 / 18$
(R' U2 R U2') R' F (R U R' U') R' F' R2 [U'] $R b-$ Probability $=1 / 18$
(R U R' F') (R U R' U') R' F R2 U' R' [U'] $\mathrm{Jb}-$ Probability $=1 / 18$
 y (R' U2 R' U') y (R' F' R2 U') (R'U R' F) R U' F F - Probability $=1 / 18$

Swap One Set of Diagonal Corners

(R^{\prime} U R' U') y ($R^{\prime} \mathbf{F}^{\prime}$ R2 U') (R^{\prime} U R' F) R F
V - Probability $=1 / 18$

F (R U' R' U') (R U R' F') (R U R' U') (R' F R F')
Y - Probability = $1 / 18$

(RUR'U)(RUR'F')(RUR'U')(R'FR2U') R' U2 (RU'R')
(R' U R U') (R' F' U' F) (R U R' F) R' $\mathrm{F}^{\prime}\left(\mathrm{R} \mathrm{U}^{\prime} R\right)$ z (U R' D) (R2 U' R D') (U R' D) (R2 U' R D') [R'] z' (R' U L' U2 R U' L) (R' U L' U2 R U' L) [U]
$\mathrm{Na}-$ Probability $=1 / 72$

G Permutations (Double cycles)

R2 U (R' U R' U') (R U' R2) D U' (R' U R D') [U] $y\left(R \cup R^{\prime} F^{\prime}\right)\left(R \cup R^{\prime} U^{\prime}\right)\left(R^{\prime} F R U^{\prime}\right)\left(R^{\prime} F R 2 U^{\prime}\right)$ $R^{\prime} U^{\prime}\left(R \cup R^{\prime} F^{\prime}\right)\left[U^{\prime}\right]$

Ga - Probability $=1 / 18$
y2 R2' F2 (R U2' R U2') R' F (R U R' U') R' F R2 R2 U' (R U' R U) (R' U R2 D') (U R U' R') D [U']
Gc - Probability $=1 / 18$

- Probabily =1/18
(F' U' F) (R2 u R' U) (R U' R u') R2'
$y^{\prime} D\left(R^{\prime} U^{\prime} R U\right) D^{\prime}\left(R 2 U R R^{\prime} U\right)\left(R U^{\prime} R U^{\prime}\right) R 2 '\left[U^{\prime}\right]$
Gb - Probability $=1 / 18$

 ($\mathrm{R} \cup R^{\prime} F^{\prime}$) ($\left.\mathrm{R} \cup \mathrm{R}^{\prime} \mathrm{U}\right)\left(\mathrm{R} U^{\prime} \mathrm{R}^{\prime} \mathrm{U}^{\prime}\right)\left(\mathrm{R}^{\prime} \mathrm{F} R 2 \mathrm{U}\right)$ (R^{\prime} U' R U' R')
Gd - Probability $=1 / 18$

